Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Health Promot Int ; 39(2)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38558241

RESUMO

Although digital health promotion (DHP) technologies for young people are increasingly available in low- and middle-income countries (LMICs), there has been insufficient research investigating whether existing ethical and policy frameworks are adequate to address the challenges and promote the technological opportunities in these settings. In an effort to fill this gap and as part of a larger research project, in November 2022, we conducted a workshop in Cape Town, South Africa, entitled 'Unlocking the Potential of Digital Health Promotion for Young People in Low- and Middle-Income Countries'. The workshop brought together 25 experts from the areas of digital health ethics, youth health and engagement, health policy and promotion and technology development, predominantly from sub-Saharan Africa (SSA), to explore their views on the ethics and governance and potential policy pathways of DHP for young people in LMICs. Using the World Café method, participants contributed their views on (i) the advantages and barriers associated with DHP for youth in LMICs, (ii) the availability and relevance of ethical and regulatory frameworks for DHP and (iii) the translation of ethical principles into policies and implementation practices required by these policies, within the context of SSA. Our thematic analysis of the ensuing discussion revealed a willingness to foster such technologies if they prove safe, do not exacerbate inequalities, put youth at the center and are subject to appropriate oversight. In addition, our work has led to the potential translation of fundamental ethical principles into the form of a policy roadmap for ethically aligned DHP for youth in SSA.


Assuntos
60713 , Política de Saúde , Humanos , Adolescente , África do Sul , Promoção da Saúde
2.
BMC Bioinformatics ; 25(1): 150, 2024 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-38616247

RESUMO

BACKGROUND: The Eastern Africa Network for Bioinformatics Training (EANBiT) has matured through continuous evaluation, feedback, and codesign. We highlight how the program has evolved to meet challenges and achieve its goals and how experiential learning through mini projects enhances the acquisition of skills and collaboration. We continued to learn and grow through honest feedback and evaluation of the program, trainers, and modules, enabling us to provide robust training even during the Coronavirus disease 2019 (COVID-19) pandemic, when we had to redesign the program due to restricted travel and in person group meetings. RESULTS: In response to the pandemic, we developed a program to maintain "residential" training experiences and benefits remotely. We had to answer the following questions: What must change to still achieve the RT goals? What optimal platforms should be used? How would we manage connectivity and data challenges? How could we avoid online fatigue? Going virtual presented an opportunity to reflect on the essence and uniqueness of the program and its ability to meet the objective of strengthening bioinformatics skills among the cohorts of students using different delivery approaches. It allowed an increase in the number of participants. Evaluating each program component is critical for improvement, primarily when feedback feeds into the program's continuous amendment. Initially, the participants noted that there were too many modules, insufficient time, and a lack of hands-on training as a result of too much focus on theory. In the subsequent iterations, we reduced the number of modules from 27 to five, created a harmonized repository for the materials on GitHub, and introduced project-based learning through the mini projects. CONCLUSION: We demonstrate that implementing a program design through detailed monitoring and evaluation leads to success, especially when participants who are the best fit for the program are selected on an appropriate level of skills, motivation, and commitment.


Assuntos
COVID-19 , Aprendizagem , Humanos , África Oriental , COVID-19/epidemiologia , Biologia Computacional , Pandemias
3.
BMC Med Ethics ; 25(1): 46, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38637857

RESUMO

BACKGROUND: The ethical governance of Artificial Intelligence (AI) in health care and public health continues to be an urgent issue for attention in policy, research, and practice. In this paper we report on central themes related to challenges and strategies for promoting ethics in research involving AI in global health, arising from the Global Forum on Bioethics in Research (GFBR), held in Cape Town, South Africa in November 2022. METHODS: The GFBR is an annual meeting organized by the World Health Organization and supported by the Wellcome Trust, the US National Institutes of Health, the UK Medical Research Council (MRC) and the South African MRC. The forum aims to bring together ethicists, researchers, policymakers, research ethics committee members and other actors to engage with challenges and opportunities specifically related to research ethics. In 2022 the focus of the GFBR was "Ethics of AI in Global Health Research". The forum consisted of 6 case study presentations, 16 governance presentations, and a series of small group and large group discussions. A total of 87 participants attended the forum from 31 countries around the world, representing disciplines of bioethics, AI, health policy, health professional practice, research funding, and bioinformatics. In this paper, we highlight central insights arising from GFBR 2022. RESULTS: We describe the significance of four thematic insights arising from the forum: (1) Appropriateness of building AI, (2) Transferability of AI systems, (3) Accountability for AI decision-making and outcomes, and (4) Individual consent. We then describe eight recommendations for governance leaders to enhance the ethical governance of AI in global health research, addressing issues such as AI impact assessments, environmental values, and fair partnerships. CONCLUSIONS: The 2022 Global Forum on Bioethics in Research illustrated several innovations in ethical governance of AI for global health research, as well as several areas in need of urgent attention internationally. This summary is intended to inform international and domestic efforts to strengthen research ethics and support the evolution of governance leadership to meet the demands of AI in global health research.


Assuntos
Inteligência Artificial , Bioética , Humanos , Saúde Global , África do Sul , Ética em Pesquisa
4.
BMC Genomics ; 25(1): 287, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38500034

RESUMO

BACKGROUND: Antimicrobial resistance (AMR) remains a significant global health threat particularly impacting low- and middle-income countries (LMICs). These regions often grapple with limited healthcare resources and access to advanced diagnostic tools. Consequently, there is a pressing need for innovative approaches that can enhance AMR surveillance and management. Machine learning (ML) though underutilized in these settings, presents a promising avenue. This study leverages ML models trained on whole-genome sequencing data from England, where such data is more readily available, to predict AMR in E. coli, targeting key antibiotics such as ciprofloxacin, ampicillin, and cefotaxime. A crucial part of our work involved the validation of these models using an independent dataset from Africa, specifically from Uganda, Nigeria, and Tanzania, to ascertain their applicability and effectiveness in LMICs. RESULTS: Model performance varied across antibiotics. The Support Vector Machine excelled in predicting ciprofloxacin resistance (87% accuracy, F1 Score: 0.57), Light Gradient Boosting Machine for cefotaxime (92% accuracy, F1 Score: 0.42), and Gradient Boosting for ampicillin (58% accuracy, F1 Score: 0.66). In validation with data from Africa, Logistic Regression showed high accuracy for ampicillin (94%, F1 Score: 0.97), while Random Forest and Light Gradient Boosting Machine were effective for ciprofloxacin (50% accuracy, F1 Score: 0.56) and cefotaxime (45% accuracy, F1 Score:0.54), respectively. Key mutations associated with AMR were identified for these antibiotics. CONCLUSION: As the threat of AMR continues to rise, the successful application of these models, particularly on genomic datasets from LMICs, signals a promising avenue for improving AMR prediction to support large AMR surveillance programs. This work thus not only expands our current understanding of the genetic underpinnings of AMR but also provides a robust methodological framework that can guide future research and applications in the fight against AMR.


Assuntos
Antibacterianos , Escherichia coli , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Escherichia coli/genética , Farmacorresistência Bacteriana/genética , Ciprofloxacina/farmacologia , Ciprofloxacina/uso terapêutico , Ampicilina , Cefotaxima , Aprendizado de Máquina , Nigéria
5.
Bioinform Adv ; 4(1): vbae008, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38312948

RESUMO

Summary: Human immunodeficiency virus (HIV) remains a public health threat, with drug resistance being a major concern in HIV treatment. Next-generation sequencing (NGS) is a powerful tool for identifying low-abundance drug resistance mutations (LA-DRMs) that conventional Sanger sequencing cannot reliably detect. To fully understand the significance of LA-DRMs, it is necessary to integrate NGS data with clinical and demographic data. However, freely available tools for NGS-based HIV-1 drug resistance analysis do not integrate these data. This poses a challenge in interpretation of the impact of LA-DRMs, mainly for resource-limited settings due to the shortage of bioinformatics expertise. To address this challenge, we present HIVseqDB, a portable, secure, and user-friendly resource for integrating NGS data with associated clinical and demographic data for analysis of HIV drug resistance. HIVseqDB currently supports uploading of NGS data and associated sample data, HIV-1 drug resistance data analysis, browsing of uploaded data, and browsing and visualizing of analysis results. Each function of HIVseqDB corresponds to an individual Django application. This ensures efficient incorporation of additional features with minimal effort. HIVseqDB can be deployed on various computing environments, such as on-premises high-performance computing facilities and cloud-based platforms. Availability and implementation: HIVseqDB is available at https://github.com/AlfredUg/HIVseqDB. A deployed instance of HIVseqDB is available at https://hivseqdb.org.

6.
BMJ Open Qual ; 13(1)2024 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-38286564

RESUMO

INTRODUCTION: The extensive resources needed to train surgeons and maintain skill levels in low-income and middle-income countries (LMICs) are limited and confined to urban settings. Surgical education of remote/rural doctors is, therefore, paramount. Virtual reality (VR) has the potential to disseminate surgical knowledge and skill development at low costs. This study presents the outcomes of the first VR-enhanced surgical training course, 'Global Virtual Reality in Medicine and Surgery', developed through UK-Ugandan collaborations. METHODS: A mixed-method approach (survey and semistructured interviews) evaluated the clinical impact and barriers of VR-enhanced training. Course content focused on essential skills relevant to Uganda (general surgery, obstetrics, trauma); delivered through: (1) hands-on cadaveric training in Brighton (scholarships for LMIC doctors) filmed in 360°; (2) virtual training in Kampala (live-stream via low-cost headsets combined with smartphones) and (3) remote virtual training (live-stream via smartphone/laptop/headset). RESULTS: High numbers of scholarship applicants (n=130); registrants (Kampala n=80; remote n=1680); and attendees (Kampala n=79; remote n=556, 25 countries), demonstrates widespread appetite for VR-enhanced surgical education. Qualitative analysis identified three key themes: clinical education and skill development limitations in East Africa; the potential of VR to address some of these via 360° visualisation enabling a 'knowing as seeing' mechanism; unresolved challenges regarding accessibility and acceptability. CONCLUSION: Outcomes from our first global VR-enhanced essential surgical training course demonstrating dissemination of surgical skills resources in an LMIC context where such opportunities are scarce. The benefits identified included environmental improvements, cross-cultural knowledge sharing, scalability and connectivity. Our process of programme design demonstrates that collaboration across high-income and LMICs is vital to provide locally relevant training. Our data add to growing evidence of extended reality technologies transforming surgery, although several barriers remain. We have successfully demonstrated that VR can be used to upscale postgraduate surgical education, affirming its potential in healthcare capacity building throughout Africa, Europe and beyond.


Assuntos
Realidade Virtual , Humanos , Uganda , Aprendizagem , Países em Desenvolvimento , Reino Unido
7.
Artigo em Inglês | MEDLINE | ID: mdl-37987019

RESUMO

Africa faces both a disproportionate burden of infectious diseases coupled with unmet needs in bioinformatics and data science capabilities which impacts the ability of African biomedical researchers to vigorously pursue research and partner with institutions in other countries. The African Centers of Excellence in Bioinformatics and Data Intensive Science are collaborating with African academic institutions, industry partners, the Foundation for the National Institutes of Health (FNIH) and the National Institute of Allergy and Infectious Diseases (NIAID) at the National Institutes of Health (NIH) in a public-private partnership to address these challenges through enhancing computational infrastructure, fostering the development of advanced bioinformatics and data science skills among local researchers and students and providing innovative emerging technologies for infectious diseases research.

8.
Nat Commun ; 14(1): 6711, 2023 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-37872149

RESUMO

Tandem repeats (TRs) represent one of the largest sources of genetic variation in humans and are implicated in a range of phenotypes. Here we present a deep characterization of TR variation based on high coverage whole genome sequencing from 3550 diverse individuals from the 1000 Genomes Project and H3Africa cohorts. We develop a method, EnsembleTR, to integrate genotypes from four separate methods resulting in high-quality genotypes at more than 1.7 million TR loci. Our catalog reveals novel sequence features influencing TR heterozygosity, identifies population-specific trinucleotide expansions, and finds hundreds of novel eQTL signals. Finally, we generate a phased haplotype panel which can be used to impute most TRs from nearby single nucleotide polymorphisms (SNPs) with high accuracy. Overall, the TR genotypes and reference haplotype panel generated here will serve as valuable resources for future genome-wide and population-wide studies of TRs and their role in human phenotypes.


Assuntos
Polimorfismo de Nucleotídeo Único , Sequências de Repetição em Tandem , Humanos , Genótipo , Sequenciamento Completo do Genoma
9.
BMC Genomics ; 24(1): 496, 2023 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-37644460

RESUMO

Despite recent efforts to increase diversity in genome-wide association studies (GWASs), most loci currently associated with kidney function are still limited to European ancestry due to the underlying sample selection bias in available GWASs. We set out to identify susceptibility loci associated with estimated glomerular filtration rate (eGFRcrea) in 80027 individuals of African-ancestry from the UK Biobank (UKBB), Million Veteran Program (MVP), and Chronic Kidney Disease genetics (CKDGen) consortia.We identified 8 lead SNPs, 7 of which were previously associated with eGFR in other populations. We identified one novel variant, rs77408001 which is an intronic variant mapped to the ELN gene. We validated three previously reported loci at GATM-SPATA5L1, SLC15A5 and AGPAT3. Fine-mapping analysis identified variants rs77121243 and rs201602445 as having a 99.9% posterior probability of being causal. Our results warrant designing bigger studies within individuals of African ancestry to gain new insights into the pathogenesis of Chronic Kidney Disease (CKD), and identify genomic variants unique to this ancestry that may influence renal function and disease.


Assuntos
Estudo de Associação Genômica Ampla , Insuficiência Renal Crônica , Humanos , População Negra/genética , Mutação , Insuficiência Renal Crônica/genética , Rim
10.
EBioMedicine ; 95: 104775, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37639939

RESUMO

BACKGROUND: Chronic kidney disease is becoming more prevalent in Africa, and its genetic determinants are poorly understood. Creatinine-based estimated glomerular filtration rate (eGFR) is commonly used to estimate kidney function, modelling the excretion of the endogenous biomarker (creatinine). However, eGFR based on creatinine has been shown to inadequately detect individuals with low kidney function in Sub-Saharan Africa, with eGFR based on cystatin-C (eGFRcys) exhibiting significantly superior performance. Therefore, we opted to conduct a GWAS for eGFRcys. METHODS: Using the Uganda Genomic Resource, we performed a genome-wide association study (GWAS) of eGFRcys in 5877 Ugandans and evaluated replication in independent studies. Subsequently, putative causal variants were screened through Bayesian fine-mapping. Functional annotation of the GWAS loci was performed using Functional Mapping and Annotation (FUMA). FINDINGS: Three independent lead single nucleotide polymorphisms (SNPs) (P-value <5 × 10-8 (based on likelihood ratio test (LRT))) were identified; rs59288815 (ANK3), rs4277141 (OR51B5) and rs911119 (CST3). From fine-mapping, rs59288815 and rs911119 each had a posterior probability of causality of >99%. The rs911119 SNP maps to the cystatin C gene and has been previously associated with eGFRcys among Europeans. With gene-set enrichment analyses of the olfactory receptor family 51 overlapping genes, we identified an association with the G-alpha-S signalling events. INTERPRETATION: Our study found two previously unreported associated SNPs for eGFRcys in continental Africans (rs59288815 and rs4277141) and validated a previously well-established SNP (rs911119) for eGFRcys. The identified gene-set enrichment for the G-protein signalling pathways relates to the capacity of the kidney to readily adapt to an ever-changing environment. Additional GWASs are required to represent the diverse regions in Africa. FUNDING: Wellcome (220740/Z/20/Z).


Assuntos
Cistatina C , Estudo de Associação Genômica Ampla , Rim , Humanos , Teorema de Bayes , Creatinina , Cistatina C/genética , Rim/fisiologia , Uganda
11.
Sci Rep ; 13(1): 5516, 2023 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-37015946

RESUMO

Genetic characterisation of circulating influenza viruses directs annual vaccine strain selection and mitigation of infection spread. We used next-generation sequencing to locally generate whole genomes from 116 A(H1N1)pdm09 and 118 A(H3N2) positive patient swabs collected across Uganda between 2010 and 2018. We recovered sequences from 92% (215/234) of the swabs, 90% (193/215) of which were whole genomes. The newly-generated sequences were genetically and phylogenetically compared to the WHO-recommended vaccines and other Africa strains sampled since 1994. Uganda strain hemagglutinin (n = 206), neuraminidase (n = 207), and matrix protein (MP, n = 213) sequences had 95.23-99.65%, 95.31-99.79%, and 95.46-100% amino acid similarity to the 2010-2020 season vaccines, respectively, with several mutated hemagglutinin antigenic, receptor binding, and N-linked glycosylation sites. Uganda influenza type-A virus strains sequenced before 2016 clustered uniquely while later strains mixed with other Africa and global strains. We are the first to report novel A(H1N1)pdm09 subclades 6B.1A.3, 6B.1A.5(a,b), and 6B.1A.6 (± T120A) that circulated in Eastern, Western, and Southern Africa in 2017-2019. Africa forms part of the global influenza ecology with high viral genetic diversity, progressive antigenic drift, and local transmissions. For a continent with inadequate health resources and where social distancing is unsustainable, vaccination is the best option. Hence, African stakeholders should prioritise routine genome sequencing and analysis to direct vaccine selection and virus control.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Vírus da Influenza A , Vacinas contra Influenza , Influenza Humana , Humanos , Influenza Humana/epidemiologia , Influenza Humana/prevenção & controle , Vírus da Influenza A Subtipo H1N1/genética , Hemaglutininas , Vírus da Influenza A Subtipo H3N2 , Uganda/epidemiologia , Filogenia , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Vacinas contra Influenza/genética , Organização Mundial da Saúde
12.
bioRxiv ; 2023 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-36945429

RESUMO

Tandem repeats (TRs) represent one of the largest sources of genetic variation in humans and are implicated in a range of phenotypes. Here we present a deep characterization of TR variation based on high coverage whole genome sequencing from 3,550 diverse individuals from the 1000 Genomes Project and H3Africa cohorts. We develop a method, EnsembleTR, to integrate genotypes from four separate methods resulting in high-quality genotypes at more than 1.7 million TR loci. Our catalog reveals novel sequence features influencing TR heterozygosity, identifies population-specific trinucleotide expansions, and finds hundreds of novel eQTL signals. Finally, we generate a phased haplotype panel which can be used to impute most TRs from nearby single nucleotide polymorphisms (SNPs) with high accuracy. Overall, the TR genotypes and reference haplotype panel generated here will serve as valuable resources for future genome-wide and population-wide studies of TRs and their role in human phenotypes.

13.
EBioMedicine ; 90: 104537, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37001235

RESUMO

BACKGROUND: Observational studies have investigated the effect of serum lipids on kidney function, but these findings are limited by confounding, reverse causation and have reported conflicting results. Mendelian randomization (MR) studies address this confounding problem. However, they have been conducted mostly in European ancestry individuals. We, therefore, set out to investigate the effect of lipid traits on the estimated glomerular filtration rate (eGFR) based on serum creatinine in individuals of African ancestry. METHODS: We used the two-sample and multivariable Mendelian randomization (MVMR) approaches; in which instrument variables (IV's) for the predictor (lipid traits) were derived from summary-level data of a meta-analyzed African lipid GWAS (MALG, n = 24,215) from the African Partnership for Chronic Disease Research (APCDR) (n = 13,612) & the Africa Wits-IN-DEPTH partnership for Genomics studies (AWI-Gen) dataset (n = 10,603). The outcome IV's were computed from the eGFR summary-level data of African-ancestry individuals within the Million Veteran Program (n = 57,336). A random-effects inverse variance method was used in our primary analysis, and pleiotropy was adjusted for using robust and penalized sensitivity testing. The lipid predictors for the MVMR were high-density lipoprotein (HDL) cholesterol, low-density lipoprotein (LDL) cholesterol, and triglycerides (TG). FINDINGS: We found a significant causal association between genetically predicted low-density lipoprotein (LDL) cholesterol and eGFR in African ancestry individuals ß = 1.1 (95% CI [0.411-1.788]; p = 0.002). Similarly, total cholesterol (TC) showed a significant causal effect on eGFR ß = 1.619 (95% CI [0.412-2.826]; p = 0.009). However, the IVW estimate showed that genetically predicted HDL-C ß = -0.164, (95% CI = [-1.329 to 1.00]; p = 0.782), and TG ß = -0.934 (CI = [-2.815 to 0.947]; p = 0.33) were not significantly causally associated with the risk of eGFR. In the multivariable analysis inverse-variance weighted (MVIVW) method, there was evidence for a causal association between LDL and eGFR ß = 1.228 (CI = [0.477-1.979]; p = 0.001). A significant causal effect of Triglycerides (TG) on eGFR in the MVIVW analysis ß = -1.3 ([-2.533 to -0.067]; p = 0.039) was observed as well. All the causal estimates reported reflect a unit change in the outcome per a 1 SD increase in the exposure. HDL showed no evidence of a significant causal association with eGFR in the MVIVW method (ß = -0.117 (95% CI [-1.252 to 0.018]; p = 0.840)). We found no evidence of a reverse causal impact of eGFR on serum lipids. All our sensitivity analyses indicated no strong evidence of pleiotropy or heterogeneity between our instrumental variables for both the forward and reverse MR analysis. INTERPRETATION: In this African ancestry population, genetically predicted higher LDL-C and TC are causally associated with higher eGFR levels, which may suggest that the relationship between LDL, TC and kidney function may be U-shaped. And as such, lowering LDL_C does not necessarily improve risk of kidney disease. This may also imply the reason why LDL_C is seen to be a poorer predictor of kidney function compared to HDL. In addition, this further supports that more work is warranted to confirm the potential association between lipid traits and risk of kidney disease in individuals of African Ancestry. FUNDING: Wellcome (220740/Z/20/Z).


Assuntos
População Africana , Nefropatias , Rim , Lipídeos , Humanos , População Africana/genética , Colesterol/sangue , HDL-Colesterol/sangue , LDL-Colesterol/sangue , Estudo de Associação Genômica Ampla , Taxa de Filtração Glomerular/fisiologia , Rim/fisiopatologia , Nefropatias/sangue , Nefropatias/etnologia , Nefropatias/genética , Nefropatias/fisiopatologia , Lipídeos/sangue , Lipídeos/genética , Análise da Randomização Mendeliana , Polimorfismo de Nucleotídeo Único , Distribuição Aleatória , Fatores de Risco , Triglicerídeos/sangue
14.
Microbiol Spectr ; : e0213921, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36790203

RESUMO

Sub-Saharan Africa has increased morbidity and mortality related to chronic obstructive pulmonary disease (COPD). COPD among people living with HIV (PLWH) has not been well studied in this region, where HIV/AIDS is endemic. Increasing evidence suggests that respiratory microbial composition plays a role in COPD severity. Therefore, we aimed to investigate microbiome patterns and associations among PLWH with COPD in Sub-Saharan Africa. We conducted a cross-sectional study of 200 adults stratified by HIV and COPD in rural Uganda. Induced sputum samples were collected as an easy-to-obtain proxy for the lower respiratory tract microbiota. We performed 16S rRNA gene sequencing and used PICRUSt2 (version 2.2.3) to infer the functional profiles of the microbial community. We used a statistical tool to detect changes in specific taxa that searches and adjusts for confounding factors such as antiretroviral therapy (ART), age, sex, and other participant characteristics. We could cluster the microbial community into three community types whose distribution was shown to be significantly impacted by HIV. Some genera, e.g., Veillonella, Actinomyces, Atopobium, and Filifactor, were significantly enriched in HIV-infected individuals, while the COPD status was significantly associated with Gammaproteobacteria and Selenomonas abundance. Furthermore, reduced bacterial richness and significant enrichment in Campylobacter were associated with HIV-COPD comorbidity. Functional prediction using PICRUSt2 revealed a significant depletion in glutamate degradation capacity pathways in HIV-positive patients. A comparison of our findings with an HIV cohort from the United Kingdom revealed significant differences in the sputum microbiome composition, irrespective of viral suppression. IMPORTANCE Even with ART available, HIV-infected individuals are at high risk of suffering comorbidities, as shown by the high prevalence of noninfectious lung diseases in the HIV population. Recent studies have suggested a role for the respiratory microbiota in driving chronic lung inflammation. The respiratory microbiota was significantly altered among PLWH, with disease persisting up to 3 years post-ART initiation and HIV suppression. The community structure and diversity of the sputum microbiota in COPD are associated with disease severity and clinical outcomes, both in stable COPD and during exacerbations. Therefore, a better understanding of the sputum microbiome among PLWH could improve COPD prognostic and risk stratification strategies. In this study, we observed that in a virologically suppressed HIV cohort in rural Uganda, we could show differences in sputum microbiota stratified by HIV and COPD, reduced bacterial richness, and significant enrichment in Campylobacter associated with HIV-COPD comorbidity.

15.
Environ Sci Pollut Res Int ; 30(12): 34856-34871, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36520281

RESUMO

We explored the viability of using air quality as an alternative to aggregated location data from mobile phones in the two most populated cities in Uganda. We accessed air quality and Google mobility data collected from 15th February 2020 to 10th June 2021 and augmented them with mobility restrictions implemented during the COVID-19 lockdown. We determined whether air quality data depicted similar patterns to mobility data before, during, and after the lockdown and determined associations between air quality and mobility by computing Pearson correlation coefficients ([Formula: see text]), conducting multivariable regression with associated confidence intervals (CIs), and visualized the relationships using scatter plots. Residential mobility increased with the stringency of restrictions while both non-residential mobility and air pollution decreased with the stringency of restrictions. In Kampala, PM2.5 was positively correlated with non-residential mobility and negatively correlated with residential mobility. Only correlations between PM2.5 and movement in work and residential places were statistically significant in Wakiso. After controlling for stringency in restrictions, air quality in Kampala was independently correlated with movement in retail and recreation (- 0.55; 95% CI = - 1.01- - 0.10), parks (0.29; 95% CI = 0.03-0.54), transit stations (0.29; 95% CI = 0.16-0.42), work (- 0.25; 95% CI = - 0.43- - 0.08), and residential places (- 1.02; 95% CI = - 1.4- - 0.64). For Wakiso, only the correlation between air quality and residential mobility was statistically significant (- 0.99; 95% CI = - 1.34- - 0.65). These findings suggest that air quality is linked to mobility and thus could be used by public health programs in monitoring movement patterns and the spread of infectious diseases without compromising on individuals' privacy.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , COVID-19 , Humanos , Poluentes Atmosféricos/análise , Uganda , Cidades , Material Particulado/análise , Monitoramento Ambiental , Controle de Doenças Transmissíveis , Poluição do Ar/análise
16.
Genes (Basel) ; 13(8)2022 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-36011371

RESUMO

BACKGROUND: According to observational studies, two polymorphisms in the apolipoprotein L1 (APOL1) gene have been linked to an increased risk of chronic kidney disease (CKD) in Africans. One polymorphism involves the substitution of two amino-acid residues (S342G and I384M; known as G1), while the other involves the deletion of two amino-acid residues in a row (N388 and Y389; termed G2). Despite the strong link between APOL1 polymorphisms and kidney disease, the molecular mechanisms via which these APOL1 mutations influence the onset and progression of CKD remain unknown. METHODS: To predict the active site and allosteric site on the APOL1 protein, we used the Computed Atlas of Surface Topography of Proteins (CASTp) and the Protein Allosteric Sites Server (PASSer). Using an extended molecular dynamics simulation, we investigated the characteristic structural perturbations in the 3D structures of APOL1 variants. RESULTS: According to CASTp's active site characterization, the topmost predicted site had a surface area of 964.892 Å2 and a pocket volume of 900.792 Å3. For the top three allosteric pockets, the allostery probability was 52.44%, 46.30%, and 38.50%, respectively. The systems reached equilibrium in about 125 ns. From 0-100 ns, there was also significant structural instability. When compared to G1 and G2, the wildtype protein (G0) had overall high stability throughout the simulation. The root-mean-square fluctuation (RMSF) of wildtype and variant protein backbone Cα fluctuations revealed that the Cα of the variants had a large structural fluctuation when compared to the wildtype. CONCLUSION: Using a combination of different computational techniques, we identified binding sites within the APOL1 protein that could be an attractive site for potential inhibitors of APOL1. Furthermore, the G1 and G2 mutations reduced the structural stability of APOL1.


Assuntos
Apolipoproteína L1 , Insuficiência Renal Crônica , Apolipoproteína L1/genética , População Negra , Humanos , Simulação de Dinâmica Molecular , Mutação de Sentido Incorreto , Insuficiência Renal Crônica/genética , Insuficiência Renal Crônica/patologia
17.
BMC Med Educ ; 22(1): 274, 2022 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-35418070

RESUMO

BACKGROUND: Epidemics and pandemics are causing high morbidity and mortality on a still-evolving scale exemplified by the COVID-19 pandemic. Infection prevention and control (IPC) training for frontline health workers is thus essential. However, classroom or hospital ward-based training portends an infection risk due to the in-person interaction of participants. We explored the use of Virtual Reality (VR) simulations for frontline health worker training since it trains participants without exposing them to infections that would arise from in-person training. It does away with the requirement for expensive personal protective equipment (PPE) that has been in acute shortage and improves learning, retention, and recall. This represents the first attempt in deploying VR-based pedagogy in a Ugandan medical education context. METHODS: We used animated VR-based simulations of bedside and ward-based training scenarios for frontline health workers. The training covered the donning and doffing of PPE, case management of COVID-19 infected individuals, and hand hygiene. It used VR headsets to actualize an immersive experience, via a hybrid of fully-interactive VR and 360° videos. The level of knowledge acquisition between individuals trained using this method was compared to similar cohorts previously trained in a classroom setting. That evaluation was supplemented by a qualitative assessment based on feedback from participants about their experience. RESULTS: The effort resulted in a COVID-19 IPC curriculum adapted into VR, corresponding VR content, and a pioneer cohort of VR trained frontline health workers. The formalized comparison with classroom-trained cohorts showed relatively better outcomes by way of skills acquired, speed of learning, and rates of information retention (P-value = 4.0e-09). In the qualitative assessment, 90% of the participants rated the method as very good, 58.1% strongly agreed that the activities met the course objectives, and 97.7% strongly indicated willingness to refer the course to colleagues. CONCLUSION: VR-based COVID-19 IPC training is feasible, effective and achieves enhanced learning while protecting participants from infections within a pandemic setting in Uganda. It is a delivery medium transferable to the contexts of other highly infectious diseases.


Assuntos
COVID-19 , Realidade Virtual , Estudos de Viabilidade , Humanos , Pandemias/prevenção & controle , Uganda
18.
Bioinform Adv ; 2(1): vbac089, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36699347

RESUMO

Summary: Next-generation sequencing (NGS) enables reliable detection of resistance mutations in minority variants of human immunodeficiency virus type 1 (HIV-1). There is paucity of evidence for the association of minority resistance to treatment failure, and this requires evaluation. However, the tools for analyzing HIV-1 drug resistance (HIVDR) testing data are mostly web-based which requires uploading data to webservers. This is a challenge for laboratories with internet connectivity issues and instances with restricted data transfer across networks. We present QuasiFlow, a pipeline for reproducible analysis of NGS-based HIVDR testing data across different computing environments. Since QuasiFlow entirely depends on command-line tools and a local copy of the reference database, it eliminates challenges associated with uploading HIV-1 NGS data onto webservers. The pipeline takes raw sequence reads in FASTQ format as input and generates a user-friendly report in PDF/HTML format. The drug resistance scores obtained using QuasiFlow were 100% and 99.12% identical to those obtained using web-based HIVdb program and HyDRA web respectively at a mutation detection threshold of 20%. Availability and implementation: QuasiFlow and corresponding documentation are publicly available at https://github.com/AlfredUg/QuasiFlow. The pipeline is implemented in Nextflow and requires regular updating of the Stanford HIV drug resistance interpretation algorithm. Supplementary information: Supplementary data are available at Bioinformatics Advances online.

19.
Brief Bioinform ; 23(1)2022 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-34591953

RESUMO

BACKGROUND: The two recent simultaneous developments of high-throughput sequencing and increased computational power have brought bioinformatics to the forefront as an important tool for effective and efficient biomedical research. Consequently, there have been multiple approaches to developing bioinformatics skills. In resource rich environments, it has been possible to develop and implement formal fully accredited graduate degree training programs in bioinformatics. In resource limited settings with a paucity of expert bioinformaticians, infrastructure and financial resources, the task has been approached by delivering short courses on bioinformatics-lasting only a few days to a couple of weeks. Alternatively, courses are offered online, usually over a period of a few months. These approaches are limited by both the lack of sustained in-person trainer-trainee interactions, which is a key part of quality mentorships and short durations which constrain the amount of learning that can be achieved. METHODS: Here, we pioneered and tested a bioinformatics training/mentorship model that effectively uses the available expertise and computational infrastructure to deliver an in-person hands-on skills training experience. This is done through a few physical lecture hours each week, guided personal coursework over the rest of the week, group discussions and continuous close mentorship and assessment of trainees over a period of 1 year. RESULTS: This model has now completed its third iteration at Makerere University and has successfully mentored trainees, who have progressed to a variety of viable career paths. CONCLUSIONS: One-year (intermediate) skills based in-person bioinformatics training and mentorships are viable, effective and particularly appropriate for resource limited settings.


Assuntos
Pesquisa Biomédica , Mentores , Pesquisa Biomédica/educação , Biologia Computacional/educação , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Universidades
20.
Res Sq ; 2021 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-34611655

RESUMO

Background Epidemics and pandemics are causing high morbidity and mortality on a still-evolving scale exemplified by the COVID-19 pandemic. Infection prevention and control (IPC) training for frontline health workers is thus essential. However, classroom or hospital ward based training portends an infection risk due to the in-person interaction of participants. We explored the use of Virtual Reality (VR) simulations for frontline health worker training since it trains participants without exposing them to infections that would arise from in-person training. It does away with the requirement for expensive Personal Protective Equipment (PPE) that has been in acute shortage and improves learning, retention and recall. This represents the first attempt in deploying VR-based pedagogy in a Ugandan medical education context. Methods We used animated VR-based simulations of bedside and ward-based training scenarios for frontline health workers. The training covered the wearing and stripping of PPE, case management of COVID-19 infected individuals and hand hygiene. It used VR headsets and Graphics Processing Units (GPUs) to actualize an immersive experience, via a hybrid of VR renditions and 360degrees videos. We then compared the level of knowledge acquisition between individuals trained using this method to comparable cohorts previously trained in a classroom setting. That evaluation was supplemented by a qualitative assessment based on feedback from participants about their experience. Results The effort resulted into a well-designed COVID-19 IPC VR curriculum, equivalent VR content and a pioneer cohort of trained frontline health workers. The formalized comparison with classroom-trained cohorts showed relatively better outcomes by way of skills acquired, speed of learning and rates of information retention ( P-value =4.0e-09) - suggesting the effectiveness and feasibility of VR as a medium of medical training. Additionally, in the qualitative assessment 90% of the participants rated the method as very good, 58.1% strongly agreed that the activities met the course objectives, and 97.7 % strongly indicated willingness to refer the course to colleagues. Conclusion VR-based COVID-19 IPC training is feasible, effective and achieves enhanced learning while protecting participants from infections within a pandemic context in Uganda. It is a delivery medium transferable to the contexts of other highly infectious diseases.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...